Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases.
نویسندگان
چکیده
Lipopolysaccharide (LPS) is a critical virulence determinant in Pasteurella multocida and a major antigen responsible for host protective immunity. In other mucosal pathogens, variation in LPS or lipooligosaccharide structure typically occurs in the outer core oligosaccharide regions due to phase variation. P. multocida elaborates a conserved oligosaccharide extension attached to two different, simultaneously expressed inner core structures, one containing a single phosphorylated 3-deoxy-D-manno-octulosonic acid (Kdo) residue and the other containing two Kdo residues. We demonstrate that two heptosyltransferases, HptA and HptB, add the first heptose molecule to the Kdo(1) residue and that each exclusively recognizes different acceptor molecules. HptA is specific for the glycoform containing a single, phosphorylated Kdo residue (glycoform A), while HptB is specific for the glycoform containing two Kdo residues (glycoform B). In addition, KdkA was identified as a Kdo kinase, required for phosphorylation of the first Kdo molecule. Importantly, virulence data obtained from infected chickens showed that while wild-type P. multocida expresses both LPS glycoforms in vivo, bacterial mutants that produced only glycoform B were fully virulent, demonstrating for the first time that expression of a single LPS form is sufficient for P. multocida survival in vivo. We conclude that the ability of P. multocida to elaborate alternative inner core LPS structures is due to the simultaneous expression of two different heptosyltransferases that add the first heptose residue to the nascent LPS molecule and to the expression of both a bifunctional Kdo transferase and a Kdo kinase, which results in the initial assembly of two inner core structures.
منابع مشابه
Identification of novel glycosyltransferases required for assembly of the Pasteurella multocida A:1 lipopolysaccharide and their involvement in virulence.
We previously determined the structure of the Pasteurella multocida Heddleston type 1 lipopolysaccharide (LPS) molecule and characterized some of the transferases essential for LPS biosynthesis. We also showed that P. multocida strains expressing truncated LPS display reduced virulence. Here, we have identified all of the remaining glycosyltransferases required for synthesis of the oligosacchar...
متن کاملPrevalence of adhesion Virulence factor genes, antibiogram, and pathogenicity of avian Pasteurella multocida isolate from Iran
Pasteurella multocida possesses various virulence factors, including capsule, lipopolysaccharide, fimbriae, toxins, outer membrane proteins, and adhesions. Adhesins have a crucial role in mediating colonization and invasion of the host. The aim of the present study was to identify the prevalence of adhesion factor genes and resistance/sensitivity patterns among the avian P. multocida isolates f...
متن کاملPasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity.
Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strai...
متن کاملNatural selection in the chicken host identifies 3-deoxy-D-manno-octulosonic acid kinase residues essential for phosphorylation of Pasteurella multocida lipopolysaccharide.
Pasteurella multocida is the causative agent of a number of diseases in animals, including fowl cholera. P. multocida strains simultaneously express two lipopolysaccharide (LPS) glycoforms (glycoforms A and B) that differ only in their inner core structure. Glycoform A contains a single 3-deoxy-d-manno-octulosonic acid (Kdo) residue that is phosphorylated by the Kdo kinase, KdkA, whereas glycof...
متن کاملIdentification of Pasteurella multocida CHAPS-soluble outer membrane proteins.
Fowl cholera continues to be of concern to the poultry industry, especially for turkey growers. This disease costs the turkey industry millions of dollars annually. In order to develop improved live attenuated vaccines or subunit vaccines, the outer-membrane proteins of Pasteurella multocida were examined with the use of proteomics. Of the 11 proteins total present in an outer-membrane subfract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 75 8 شماره
صفحات -
تاریخ انتشار 2007